Python install tesseract

markdown #說明 這篇要說明安裝 tesseract 這個套件的一些步驟,這個套件主要在做文字的偵測跟辨識,目前想用於偵測影像中的文字並視為雜訊而去除,所以安裝這個套件 不過因為本身使用 Pycharm 當作IDE,可是好像在安裝的過程中無法以平常的方式直接安裝,所以參考網路的作法 屬於Python 安裝套件的基本方式再修正一些步驟,基本的流程是直接下載套件包,然後引入環境變數,之後再用 pip 來裝 但這邊前面兩個步驟相同,最後pip 的方式則省略 - 參考: https://www.twblogs.net/a/5ba25cf12b71771a4da9a2ca #操作流程 ##下載EXE 先到 下載地址,下載與電腦本身要相符,否則會安裝失敗,例如電腦為64位元則安裝W64
下載成功會有下載好的 exe檔案 ##EXE 安裝
依照圖片中的說明安裝,大部分都是按下一步,其中有一個多國語言要打勾,還有實際安裝的路徑要記錄下來,等下環境變數會用到 ##設定環境變數 因為安裝的時間會有點久,可以先來設定環境變數
依照圖片的方式設定,在3的時候 在Path 新增剛剛記錄下來的路徑 因為參考其他作者提供的方法在系統變數下,如果有 Path,也加入 ##加入系統變數設定新資料夾
在系統變數下,新增一個變數名稱為TESSDATA_PREFIX,變數值為剛剛記錄下來的路徑加上/tessdata ##安裝完成
##Demo偵測文字
##Code ``` # Import required modules import cv2 as cv import math import argparse import numpy as np import cv2 parser = argparse.ArgumentParser( description='Use this script to run text detection deep learning networks using OpenCV.') # Input argument parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') # Model argument parser.add_argument('--model', default="./model/frozen_east_text_detection.pb", help='Path to a binary .pb file of model contains trained weights.' ) # Width argument parser.add_argument('--width', type=int, default=320, help='Preprocess input image by resizing to a specific width. It should be multiple by 32.' ) # Height argument parser.add_argument('--height', type=int, default=320, help='Preprocess input image by resizing to a specific height. It should be multiple by 32.' ) # Confidence threshold parser.add_argument('--thr', type=float, default=0.5, help='Confidence threshold.' ) # Non-maximum suppression threshold parser.add_argument('--nms', type=float, default=0.4, help='Non-maximum suppression threshold.' ) args = parser.parse_args() ############ Utility functions ############ def decode(scores, geometry, scoreThresh): detections = [] confidences = [] ############ CHECK DIMENSIONS AND SHAPES OF geometry AND scores ############ assert len(scores.shape) == 4, "Incorrect dimensions of scores" assert len(geometry.shape) == 4, "Incorrect dimensions of geometry" assert scores.shape[0] == 1, "Invalid dimensions of scores" assert geometry.shape[0] == 1, "Invalid dimensions of geometry" assert scores.shape[1] == 1, "Invalid dimensions of scores" assert geometry.shape[1] == 5, "Invalid dimensions of geometry" assert scores.shape[2] == geometry.shape[2], "Invalid dimensions of scores and geometry" assert scores.shape[3] == geometry.shape[3], "Invalid dimensions of scores and geometry" height = scores.shape[2] width = scores.shape[3] for y in range(0, height): # Extract data from scores scoresData = scores[0][0][y] x0_data = geometry[0][0][y] x1_data = geometry[0][1][y] x2_data = geometry[0][2][y] x3_data = geometry[0][3][y] anglesData = geometry[0][4][y] for x in range(0, width): score = scoresData[x] # If score is lower than threshold score, move to next x if (score < scoreThresh): continue # Calculate offset offsetX = x * 4.0 offsetY = y * 4.0 angle = anglesData[x] # Calculate cos and sin of angle cosA = math.cos(angle) sinA = math.sin(angle) h = x0_data[x] + x2_data[x] w = x1_data[x] + x3_data[x] # Calculate offset offset = ( [offsetX + cosA * x1_data[x] + sinA * x2_data[x], offsetY - sinA * x1_data[x] + cosA * x2_data[x]]) # Find points for rectangle p1 = (-sinA * h + offset[0], -cosA * h + offset[1]) p3 = (-cosA * w + offset[0], sinA * w + offset[1]) center = (0.5 * (p1[0] + p3[0]), 0.5 * (p1[1] + p3[1])) detections.append((center, (w, h), -1 * angle * 180.0 / math.pi)) confidences.append(float(score)) # Return detections and confidences return [detections, confidences] if __name__ == "__main__": # Read and store arguments confThreshold = args.thr nmsThreshold = args.nms inpWidth = args.width inpHeight = args.height model = args.model # Load network net = cv.dnn.readNet('./frozen_east_text_detection.pb') # Create a new named window kWinName = "EAST: An Efficient and Accurate Scene Text Detector" outputLayers = [] outputLayers.append("feature_fusion/Conv_7/Sigmoid") outputLayers.append("feature_fusion/concat_3") # Read frame frame = cv.imread("./images/car_wash.jpg") # Get frame height and width height_ = frame.shape[0] width_ = frame.shape[1] rW = width_ / float(inpWidth) rH = height_ / float(inpHeight) # Create a 4D blob from frame. blob = cv.dnn.blobFromImage(frame, 1.0, (inpWidth, inpHeight), (123.68, 116.78, 103.94), True, False) # Run the model net.setInput(blob) output = net.forward(outputLayers) t, _ = net.getPerfProfile() label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency()) # Get scores and geometry scores = output[0] geometry = output[1] [boxes, confidences] = decode(scores, geometry, confThreshold) # Apply NMS indices = cv.dnn.NMSBoxesRotated(boxes, confidences, confThreshold, nmsThreshold) for i in indices: # get 4 corners of the rotated rect vertices = cv.boxPoints(boxes[i[0]]) # scale the bounding box coordinates based on the respective ratios for j in range(4): vertices[j][0] *= rW vertices[j][1] *= rH for j in range(4): p1 = (vertices[j][0], vertices[j][1]) p2 = (vertices[(j + 1) % 4][0], vertices[(j + 1) % 4][1]) print(j) cv.line(frame, p1, p2, (0, 255, 0), 2, cv.LINE_AA) # print(p1,p2) if j == 0: x = (int(p1[0]), int(p1[1])) if j == 2: y = (int(p1[0]), int(p1[1])) print(y) #cv2.rectangle(frame, x, y, (0, 0, 0), -1) # Put efficiency information # cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) # Display the frame cv2.namedWindow('result', cv2.WINDOW_NORMAL) cv2.resizeWindow("result", 640, 480) cv.imshow("result", frame) cv.waitKey(0) ```

留言